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POSTER { Control, Navigation, and Planning: Theoretical analysis.A Control Variable Perspectivefor the Optimal Combination ofTruncated Corrected ReturnsMichael O. Du�Department of Computer ScienceUniversity of MassachusettsAmherst, MA 01003du�@cs.umass.eduAbstractThis paper details further development of an idea �rst suggestedin (Barto & Du�, 1994)|that of bringing variance reduction tech-niques to bear upon the problem of optimally combining correctedtruncated returns.1 INTRODUCTIONConsider a system whose dynamics are described by a �nite state Markov chain withtransition matrix P , and suppose that at each time step, in addition to making atransition from state xt = i to xt+1 = j with probability pij, the system producesa randomly determined reward, rt+1, whose expected value is R(i). The evalua-tion function, V , maps states to their expected, in�nite-horizon discounted returns:V (i) = E fP1t=0 trt+1jx0 = ig ; 0 <  < 1. It is well known that V uniquelysati�es a linear system of equations decribing local consistency: V = R+ PV:One way (Watkins, 1989) of viewing the TD(�) algorithm (Sutton, 1988) is thatit updates its current value function estimate ~V (xt) in the direction of a weightedcombination of the following (in�nite) family of estimators:X [k] = rt + rt+1 + � � �k�1rt+k�1 + k ~V (xt+k) k = 1; 2; :::: (1)
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Figure 1: TD(�) weight sets. Figure 2: Convergence results.For large values of k (such that k is small), the truncated corrected return, X [k],is approxmately equal to the sampled discounted return, which is an unbiased esti-mate for V (xt), and has variance equal to the variance of accumulated discountedrewards encountered along sample paths. For smaller values of k, the portion oftotal variance due to the variance of summed, discounted rewards beyond time hori-zon k is replaced by the variance of ~V (xtk). If the approximate value function isequal to the true value function, then the variance of this \tail" will be less thanthe variance of the tail of sampled returns; if the approximate value function is inerror, then in general X [k] will be a biased estimator.In TD(�), the estimators X [k] are combined via Xw = P1k=1wkX [k]; where wk =�(k�1)(1 � �), and ~V (xt) is updated via ~V (new)(xt) = (1 � �) ~V (old)(xt) + �Xw.The weighting function, wk, for the combination of truncated corrected returns isillustrated in Figure 1. For small values of �, the resulting estimate Xw is moreheavily weighted toward X [k]'s with small values of k, estimators with potentiallysmall variance but high bias. Watkins has suggested that a reasonable strategymight be to apply TD(�) with � near one at the outset of learning, so as to avoid theill-e�ects of using biased ~V 's, then as con�dence in the ~V 's grows, to slowly reduce� to reduce variance. The decaying exponential form of the weighting functiongives rise to an update rule that can be implemented incrementally, but there is noreason to presume that the \best" combination of estimators would be weighted inthis way for any value of �, in fact one might well suspect that the best weightingscheme would (at least) vary with state and time.In (Barto & Du�, 1994), it was suggested that the estimators X [k] could be inter-preted as what are known as \control variables" in the literature of Monte Carlovariance reduction techniques. A control variable (Lavenberg & Welch, 1981) for arandom variable Y , whose expected value, �, we are trying to estimate, is anotherrandom variable, C, that is correlated with Y and whose expected value is knownor known to be the same as Y 0s. A new estimator for � can be constructed that is alinear combination of Y and C, and if the combining is done in the right way, thenthe new estimator will be unbiased and will have variance less than the variance ofY alone.This paper investigates the consequences of applying a multivariable form of this



variance reduction technique to the problem of estimating a value function. Inthis setting, the control variables are the current estimate, ~V , together with thetruncated corrected returns, X [k]. Admittedly, the algorithms suggested by thefull-blown control-variable approach, even when realizable, are computationally in-tensive, but the real goal of this analysis is to gain increased insight into temporaldi�erence methods and, in particular, to improve upon heuristic schemes like theone o�ered by Watkins for introducing or \scheduling" bias|the e�orts summarizedin this paper seek more sophisticated methods based upon a rigorous theory.2 A MINIMUM VARIANCE APPROACHConsider the (in�nite) family of estimators, (1), for V (xt), together with X [0] =~V (xt). If the ~V (�) are unbiased, then so are the X [k], and the unbiased linearlyweighted combination of the X [k], P1k=0 wkX [k], having minimum variance is ob-tained by choosing 1 w� = ��1X 110��1X 1 (2)|where �X denotes the covariance matrix of the estimators X [k] and 1 is a columnvector of 1's. The resulting minimum variance estimator hasV ar( 1Xk=0w�kX [k]) = w�0�Xw� = 110��1X 1 : (3)With regard to the covariance matrix �X , consider a generic entry:[�X ]m;n = Cov(X [m] ; X [n]) = Cov m�1Xk=0 krt+k + m ~V (xt+m); n�1Xk=0 krt+k + n ~V (xt+n)! :Without loss of generality, suppose that m � n, and letZ0 def= � rt rt+1 � � � rt+n�1 ~V (xt+m) ~V (xt+n) � :ThenX [m] = � 1  2 � � � m�1 0 � � � 0 m 0 �Z = C 0mZX [n] = � 1  2 � � � m�1 m � � � n�1 0 n �Z = C 0nZ:But Cov(C 0mZ;C 0nZ) = C 0m�ZCn, where �Z is the covariance matrix associatedwith Z. One can now address the (less messy) problem of computing, estimating,or approximating entries in �Z . Generic entries are of the form (1) Cov(rt+i; rt+j),(2) Cov(rt+i; ~V (xt+m)) or Cov(rt+i; ~V (xt+n)), and (3) Cov( ~V (xt+m); ~V (xt+n)).1This (Gauss-Markov) formula for w� may be derived by,for example, using Lagrange multipliers to solve the constrained optimization problem:minw E n�P1k=0 wkX [k] � V (xt)�2o, subject toPk wk = 1.



Supposing for the moment that w� could be computed, the new estimate for V (xt)is simply ~V (1)(xt) = P1k=0 w�kX [k]. Optimally weighted estimates could be con-structed for the other states as well, and for each state the variance of the cor-responding new ~V (1) decreases in a well-de�ned way given by Equation 3. Thevariance (covariance) structure of the improved ~V (1), in turn, enters into the cal-culation of the next iteration of optimal weight calculations through the genericentries of type (2) and (3) in �Z listed in the previous paragraph. Conceptually,the result of following this procedure is that each state will be assigned a distinctset of weights that change value in an \open loop" fashion as value-function updatesoccur. The weight prescription is the \best" in the sense of expected dynamics andupdates over an entire ensemble of simulations whose initial estimates are unbiasedand have an initial covariance matrix speci�ed by �V (0) . One straightforward wayof obtaining initial unbiased value function estimates, ~V (0), would be to simply usethe sample mean (computed from one or more trials) of accumulated discountedrewards along sample paths of length k starting from each state, where k is cho-sen to be large enough to ensure that k is small. Using one long sample path toconstruct such estimates for more than one state necessarily implies some degree ofcorrelation between the intial set of ~V 's.3 FULL BACKUP CASEIf the expected rewards, R, and transition matrix, P , are known, then one canconsider the following family of (\fully backed up") estimators for V (xt): with xtassumed to be state I, X [k] =Pk�1i=0 iPNj=1(P i)IjR(j)+kPNj=1(P k)Ij ~V (j); k =0; 1; 2; :::;|where N denotes the number of states. It can be shown, using the samemethods as in the previous section, that generic entries in the covariance matrix�X are given byCov(X [m] ; X [n]) = m+n NXk=1(Pm)Ik NXj=1(Pn)IjCov( ~V (k); ~V (j)); (4)and the covariance matrix associated with the new set of estimates has entriesCov(V (1)I ; V (1)J ) = NXm=1( 1Xk=0wIkk(P k)Im! NXn=1Cov(V (m); V (n)) 1Xk=0wJkk(P k)Jn!)(5)|where wIk denotes the kth optimal weight for state I.Example: Figure 2 plots summed-squared error versus iteration (average resultsover 25 trials of initial estimates having standard normal errors) for the full back-upversion of the iterative Gauss-Markov algorithm with estimator sets of size 2,3, and5. 2 applied to a ten-state problem with  = :7. As expected, as the number of2For example, for an estimator set of size 2, fX [0];X [1]g, taking m = 0 and n = 1 inEquation 4 leads to�X = � V ar( ~V (I)) PNj=1(P )IjCov( ~V (I); ~V (j))PNj=1(P )IjCov( ~V (I); ~V (j)) 2PNk=1(P )IkPNj=1(P )IjCov( ~V (k); ~V (j)) � ;



estimators increases, so does the rate of convergence. As k ! 1, X [k] becomesthe Neumann series for V , and the corresponding wk dominates the other weights.Similarly, for the case of two estimators (Equation 6), the optimal weights (optimal�) place more emphasis on X [1] (in fact, it is not unusual for X [0] to have negativeweight 3 ). The following analysis further explains why an optimal weighting withan associated value of � > 1 should not be surprising.Equation 6 may be re-written as V (k+1) = [�P + (1� �)I]V (k)+�R; and the �xedpoint, V �, satis�es this equation identically. Subtracting it from both sides yieldsan equation for the error: �(n+1) = [�P + (1� �)I]| {z }M� �(k): If e is an eigenvector forP with eigenvalue �, then e is also a eigenvector for M� with eigenvalue�� = �� + (1� �): (7)The behavior of the error is governed by the eigenvalue of M� having largest mag-nitude. By setting the magnitudes of the values of �min and �max under the map-ping de�ned by (7) equal to one another, one arrives at the optimal choice of�� = 22�(1��min) (see Figure 3).4 SAMPLE-BASED METHODSCan the sample-based approach of Section 2 be made to work in way similar to themodel-based approach of the last section? One could construct sample covariancematrices, �̂X , in the usual way, but computational experience strongly suggeststhat using a sample covariance matrix, which has some amount of sampling variance(error), in \optimal" weight calculations does not work well. And unfortunately,analytical approaches must contend with the problem of calculating the covariancebetween mixtures rather than simple random variables; i.e., V ar(V (xt+1)) is notthe same thing as Pj Pxt;jV ar(V (j)).Suppose that R and P are unknown, but that the process has been observed as itevolves and accumulates rewards and that this information has been recorded inthe following matrix and vector:P̂ = 26664 n11n1 n12n1 � � � n1Nn1n21n2 n22n2 � � � n2Nn2... ... � � � ...nN1nN nN2nN � � � nNNnN 37775 R̂ = 26666664 Pn1i=1 ri(1)n1Pn2i=1 ri(2)n2...PnNi=1 ri(N)nN 37777775 (8)and the rule for updating entries in the covariance matrix �V is just the Equation 5 with\1" replaced by \1" in the summations over k. These expressions, along with Equation 2,in essence specify how � should change in the TD(0)-type update rule:V (k+1)(I) = (1� �)V (k)(I) + �"R(I) +  NXj=1 PIjV (k)(j)# (6)3R. Sutton & S. Singh have communicated similar empirical results.
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(accelerated)Figure 3: Geometry of optimal �. Figure 4: The model/no-model \continuum."|where N is the number of states, nij is the number of i! j transitions observed,ni is the total number of transitions from state i observed, and ri(k) denotes the ithsample of reward observed in transit from state k. These are the maximum-liklihoodestimates of P and R given the observed data, and one may derive con�denceintervals for P̂ and R̂ as well (Nanthi & Wassan, 1987) (Billingsley, 1961).Motivated by the preceding analysis of ideal values for �, consider the re-laxation recursion with P and R replaced by their estimates: V (k+1) =h(1� �)I + �P̂iV (k) + �R̂: V � satis�es Equation 6 identically, and subtractingit from both sides results in an equation for the evolution of error: V (k+1) � V � =[(1� �)I + �P ] (V (k) � V �) + �(�R + �P V̂ (k)), where �R = R̂ � R and�P = P̂ �P are asymptotically normal. The error equation may be approximatedby �(k+1) = I�(k) + (P � I)��(k) + �w, where w is vector of normal, mean-zeronoise. This is a disrete-time, stochastic, bilinear system (Mohler, 1980) that wewould like to drive to zero as quickly as possible (through choice of �), and thereexist advanced methods for doing so (e.g., Gutman, 1981). A simple method, basedon simply minimizing the expected squared error at the next step, suggests choosing�(k+1) = �0(I�P̂ )��0(I�P̂ )0(I�P̂ )�+Pi �2i , where �i is the ith component of the mean zeronoise, which should decay to 0 as P̂ and R̂ converge.5 Discussion: TD-relaxation with Models and ApproximateModelsWith regard to the full backup version of the TD(0)-type recursion, Equation 6, itwas shown in a Section 3 that, under certain assumptions, the � yielding fastestconvergence to a �xed point has a value greater than one; i.e., that the relaxationshould be over-relaxed. On the other hand, if we have no knowlege of the transitionmatrix P , the usual TD(0) scheme (which is a form of stochastic approximation),having observed a transition from state i to j, in essence takes P to be a matrixof all zeroes but for a single value of one in the i; jth position (i.e., it uses aninstantaneously sampled version of the true model), and prescribes a choice of �that is severely under-relaxed. This suggests that there is a continuous spectrum of



optimal choices for �|that the best � depends on the degree of con�dence one hasin the \model," P .Figure 4 views TD(0) as lying at the extreme no-model end of the spectrum. At theopposite end of the spectrum, methods choose their step-sizes in an optimal (mini-mum variance) fashion based on full knowledge of system parameters. In betweenthese two extremes lie a mixture of methods including those based on constrainedmodels (e.g., stochastic approximation acceleration) and estimated models (e.g.,incremental maximum liklihood).The \incremental maximum liklihood algorithm" works as follows: Suppose that,after having observed a number of transitions, P̂ (and R̂) estimates have beenconstructed as in Equation 8, (I � P̂ )�1 has been computed, and that we nowobserve a transition from state i to state j. The i ! j transition changes onlythe ith row of P̂ , and the corresponding change in (I � P̂new)�1 can be computedwithout starting from scratch by making use of the following well-known \rank-oneupdate"Theorem: Let A be a matrix with inverse N = A�1. Let h be a column vector and� a row vector. Then �N = (A� h�)�1 exists i� �Nh 6= 1 and, if so,�N = N + (Nh)(�N )1� �Nh :Let h be a column vector of all zeros but for a \1" in the ith position, and � =� ni(ni+1) [ ni1 ni2 � � � nij � ni � � � niN ] : Then(I �P̂new)�1 = (I�P̂old)�1+ [ith column of (I � P̂old)�1][�(I � P̂old)�1]1� [ith entry of �(I � P̂old)�1] :This formula gives rise to an online update rule for (I � P )�1 that takes ap-proximately N2 operations per observation. The update gives the exact inverse.Gauss-Seidel takes number-of-contractions �N2 per observation, where number-of-contractions depends on the accuracy desired and is usually small but may occa-sionally spike to > N operations. Prioritized Sweeping (Moore, 1993) makes use ofmaximum liklihood estimates (8) as well and empirically outperforms Gauss-Seidel.It could be argued that the rank-one update algorithm is relatively straightforwardto understand/implement; there are no parameters like Moore's � or �, and conver-gence analysis is straightforward since it is directly coupled to the convergence ofP̂ and R̂ to the true system parameters.Some �nal comments regarding Figure 4: Since the early 1950's when StochasticApproximation was �rst introduced, there have been a number of schemes proposedfor accelerating convergence. Among them, (Kesten, 1958) suggests maintainingstep size at nomimal values until a change in sign of successive estimates occurs;(Jacobs, 1988) is recent related work. (Venter, 1967)'s method accelerates therate of convergence by, in e�ect, estimating the slope of the underlying regressionfunction at the desired root. More recently, (Dupuis & Simha, 1991) have suggestedtaking multiple samples at given operating points to reduce variance. Apart fromthese acceleration schemes for improving the standard algorithm, it should be notedthat stochastic approximation is a rather general method for computing roots of



noisy (nonlinear) regression functions. In the case of the value-estimation problem,however, the sought-after value occurs at the intersection of a collection of linearmanifolds| the standard algorithm could be improved upon by exploiting this fact(in Venter's method, for example, each data point contributes information aboutthe slope of the regression function at its root).AcknowledgementsThanks to Andy Barto and to the members of the Adaptive Networks Laboratory.This work was supported in part by the National Science Foundation under GrantECS-9214866 to Professor Barto.ReferencesA. Barto & M. O. Du� (1994). Monte Carlo Matrix Inversion and ReinforcementLearning. In D. S. Touretzky (ed.), Advances in Neural Information ProcessingSystems 5. San Mateo, CA: Morgan Kaufmann.P. Billingsley (1961). Statistical Inference for Markov Processes Univerity ofChicago Press.P. Dupuis & R. Simha (1991). On sampling controlled stochastic approximation.IEEE-TAC 36:915-924.P. Gutman (1981). Stabilizing Controllers for Bilinear Systems. IEEE-TAC 26(4),pp. 917-922.R. Jacobs (1988). Increased Rates of Convergence Through Learning Rate Adap-tation. Neural Networks 1:295-307.H. Kesten (1958). Accelerated Stochastic Approximation. Ann. Math. Statist.29:41-59.S. Lavenberg & P. Welch (1981). A perspective on the use of Control Variables toincrease the e�ciency of Monte-Carlo simulations. Management Science 27:322-335.R. Mohler & W. Kolodzki (1980). An Overview of Stochastic Bilinear ControlSystems. IEEE-TAC pp. 917-922.A. Moore & C. Atkeson (1993). Prioritized Sweeping: Reinforcement Learning withLess Data. Machine Learning 13:103-130.K. Nanthi & M. Wassan (1987). Statistical Estimation for Stochastic Processes,Queen's Papers in Pure and Applied Mathematics, no. 78.R. Sutton (1988). Learning to Predict by the Method of Temporal Di�erences.Machine Learning 3:9-44.J. Venter (1967). An Extension of the Robbins-Monro procedure. Ann. Math.Statist. 38:181-190.C. Watkins (1989). Learning from Delayed Rewards. PhD Thesis Cambridge Uni-versity.
View publication statsView publication stats

https://www.researchgate.net/publication/2676699

