
Q-Learning for Bandit Problems(CMPSCI Technical Report 95-26)Michael O. Du�Department of Computer ScienceUniversity of MassachusettsAmherst, MA 01003duff@cs.umass.eduMarch 24, 1995AbstractMulti-armed bandits may be viewed as decompositionally-structuredMarkov decision processes (MDP's) with potentially very large statesets. A particularly elegant methodology for computing optimal poli-cies was developed over twenty ago by Gittins [Gittins & Jones, 1974].Gittins' approach reduces the problem of �nding optimal policies forthe original MDP to a sequence of low-dimensional stopping problemswhose solutions determine the optimal policy through the so-called\Gittins indices." Katehakis and Veinott [Katehakis & Veinott, 1987]have shown that the Gittins index for a task in state i may be in-terpreted as a particular component of the maximum-value functionassociated with the \restart-in-i" process, a simple MDP to whichstandard solution methods for computing optimal policies, such assuccessive approximation, apply. This paper explores the problem oflearning the Gittins indices on-line without the aid of a process model;it suggests utilizing task-state-speci�c Q-learning agents to solve theirrespective restart-in-state-i subproblems, and includes an example inwhich the online reinforcement learning approach is applied to a sim-ple problem of stochastic scheduling|one instance drawn from a wideclass of problems that may be formulated as bandit problems.1



1 IntroductionReinforcement learning algorithms, such as the method of temporal di�er-ences (TD) [Sutton, 1988] and Q-learning [Watkins, 1989], were originallyadvanced as models of animal learning, motivated and inspired by the be-havioral paradigms of classical and instrumental conditioning. These algo-rithms have subsequently proved useful in solving certain problems of pre-diction and control encountered by general adaptive real-time systems oragents embedded in stochastic environments. Supporting theory and ap-plications have reached a stage of development that is relatively mature.Connections have been established with stochastic dynamic programmingand heuristic search [Barto et al, 1990 & 1991], and a mathematical frame-work, grounded in the classical theory of stochastic approximation, has ledto new and improved proofs of convergence [Jaakkola et al, 1994], [Tsitsiklis,1994]. Researchers have customarily focused their attention upon asymptoticlearning of maximally-e�cient strategies, and not on the \optimal learning"of these strategies. The most successful applications have been to large,complex problems for which the computational e�ort required by traditionalengineering methods would be unduly burdensome and perhaps unjusti�ed,given that in many cases only approximate models of the underlying systemsare known [Tesauro, 1992], [Crites, 1995].This paper examines a class of problems, called \bandit" problems, that isof considerable practical signi�cance. One basic version of the problem con-cerns a collection of N statistically independent reward processes (a \familyof alternative bandit processes") and a decision-maker who, at each timet = 1; 2; : : : ; selects one process to \activate." The activated process yieldsan immediate reward and then changes state; the other processes remain\frozen" in their current states and yield no reward. The decision-maker'sgoal is to splice together individual reward processes into one sequence ofrewards having maximum expected discounted value.The size of the state sets associated with bandit problems may typicallybe of such magnitude as to overwhelm straightforward methods of solution.These large state sets, however, do possess a particular Cartesian-productstructure and independence under various control actions, and one may ex-ploit these de�ning characteristics. In fact, proof that bandit problems canbe decomposed into simpler, low-dimensional subproblems| in e�ect, ren-dering problems for which previous approaches had exponential complexity2



into problems with solutions of linear complexity| has been rigorously es-tablished by Gittins [Gittins & Jones, 1974]. In this paper I will show howQ-learning can be integrated with the Gittins approach to solve bandit prob-lems online in a model-free way.After reviewing the bandit problem formulation, this paper notes thecomplexity of computing optimal policies for a family of alternative banditprocesses by modeling the family, straightforwardly, as one large Markovdecision process. This is followed by a discussion of Gittins' approach, whichis a comparatively e�cient and elegant method with a number of interestinginterpretations, one of which allows Q-learning to be applied. (A brief andinformal summary of TD(0) and Q-learning is provided in the Appendix.)The main contribution of this paper appears in Section 6, where thecentral conceptual argument is summarized and the implementational detailsof a reinforcement learning algorithm are presented. This is followed byseveral examples, as well as a discussion of important generalizations of thebasic bandit formulation to cases of practical interest.Finally, this paper concludes by observing that the archetypal multi-armed bandit problem, in which policies map histories to arm-selections,captures the essence of the problem of optimal learning| the algorithm pre-sented in Section 6 may be interpreted as a method for learning how to learnoptimally.2 Bandit ProblemsSuppose there exist N stochastic processes fxi(k)g, i = 1; 2; :::; N , whosevalues are members of a countable set. At each stage, k, a decision makerchooses an action, ak 2 A = f1; 2; :::; Ng.Supposing that ak = j, then the state x� = (x1(k); :::; xN(k)) evolvesaccording to xi(k + 1) = xi(k) i 6= jxj(k + 1) = fj(xj(k); wj(k));where wj(k) is a random disturbance depending on xj(k) but not on priordisturbances. For example, for Markov transitions, the state evolution is gov-erned via Prfxj(k + 1) = yg = Pxj(k);y, where P is a pre-speci�ed transitionmatrix. This is the case considered henceforth (Figure 1).3
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"Activation Switch"Figure 1: FABP schematic.The goal is to choose a sequence of actions fakg to minimize the expectedvalue of the in�nite-horizon discounted return:1Xk=0 
kRa(k)(xa(k)(k));whereRa(�) is a bounded reward function and 
 2 (0; 1) is the discount factor.Hence, the decision maker is essentially switching between the componentprocesses' reward streams; activating a given process causes it to changestate, while other component-process states remain \frozen." 1This is one version of the \multi-armed bandit" problem. In the liter-ature, each component process is referred to as a bandit process, while theentire collection of candidate processes is termed a family of alternative ban-dit processes (FABP).The multi-armed bandit problem appears to have originated with the pa-per by Thompson [Thompson, 1933]. In a highly-in
uential paper, Robbins1In some versions of this problem, at each time k, one also has the option of retiringpermanently and receiving a one-time-only reward 
kM . M provides a useful parametriza-tion for certain derivations or interpretations of the Gittins index, which will be reviewedin Section 4 (note that for M su�ciently small, the retirement option can be excluded).4



[Robbins, 1952] initiated systematic study of bandit problems that empha-sized strategies for which asymptotic \loss" tends to zero. Bellman [Bellman,1956] adopted a Bayesian formulation for the in�nite-horizon discounted case,and Gittins and Jones [Gittins & Jones, 1976] generalized Bellman's processmodel to the one given above. Dubins and Savage [Dubins & Savage, 1976]credit F. Mosteller with coining the term \two-armed bandits."This term and its multi-armed generalization refer to the Bayesian adap-tive control problem of selecting a sequence of plays on a slot machine thathas several arms corresponding to di�erent but unknown probability distri-butions of payo�. One may identify the conditional probabilty distributionsof success probabilites of the respective arms given the observed past historyup to stage k with the process state fxi(k)g given above. The action ofpulling an arm elicits an immediate reward or payo� as well as a Bayes-ruleupdate (which is Markov) of the arm's success probability.The slot machine example highlights a key feature of multi-armed banditproblems, namely, it may be prudent to sacri�ce short-term reward for infor-mation gain that will allow more informed future decisions. Thus, Whittle[Whittle, 1982] has claimed that a bandit problem \embodies in essentialform a con
ict evident in all human action." This \exploration versus ex-ploitation" trade-o�, a recurring theme in sequential experimentation andadaptive control, makes the general bandit problem a challenging one.3 Families of Alternative Bandit Proceses asMarkov Decision Processes3.1 Markov Decision ProcessesConsider a system whose dynamics are described by a �nite state Markovchain with transition matrix P , and suppose that at each time step, in addi-tion to making a transition from state xt = i to xt+1 = j with probability Pij,the system produces a randomly determined reward, rt+1, whose expectedvalue is R(i). The evaluation function, V , maps states to their expected,in�nite-horizon discounted returns,V (i) = E ( 1Xt=0 
trt+1jx0 = i) ;5



and V (�) may also be shown to uniquely satisfy a system of linear equationsdescribing local consistency: for i = 1 to N ,V (i) = R(i) + 
Xj PijV (j): (1)In addition, for each state i, suppose that there is a set of feasible actions,Ai, from which to choose, and that choosing an action, a, determines thetransition probabilities and reward distribution associated with that state.The resulting Markov chain is called a Markov decision process (MDP). A(stationary) policy is a mapping of states to actions, and one may thinkof P above as the transition matrix associated with some particular policy.An optimal policy is one that optimizes the value function over all states;the associated optimal value function is the unique solution to Bellman'soptimality equation: for i = 1 to N ,V (i) = maxa2Ai 24R(i; a) + 
 NXj=1Pij(a)V (j)35 : (2)An optimal policy is determined by the optimal value function through Equa-tion 2; that is, if V is the optimal value function, then for each state i, anoptimal action for that state is the action that achieves equality in Equation2. Standard methods for solving Bellman's equation include value iteration,policy iteration, and linear programming|see, for example, [Ross, 1983] or[Bertsekas, 1987].3.2 FABP's as MDP'sThis section adopts a perspective from which a family of alternative banditprocesses, such as that described in Section 2, can be viewed as a standardMarkov decision process. Computing optimal policies for bandit problems byapplying standard methods to their associated MDP's, however, is in generalill-advised.Consider the bandit problem of Section 2 with N tasks, each with statespace S. The overall state of the FABP is then an element of SN , and theaction of activating a given task generates an immediate reward and causesthe FABP-state to change in a Markovian fashion. Hence, ignoring the special6



structural constraints satis�ed by FABP's, they are simply standard MDP'swith potentially rather large state-sets. Transition matrices are jSjN -by-jSjN , and standard methods for computing optimal policies have complexityof order O(jSjcN), where c is a small constant.But non-activated tasks do not change state, and rewards received dependonly upon the state of the active task. These features may naturally leadone to conjecture the existence of a decompositionally-de�ned optimal policywhose determination requires work on the order of O(N jSjc). This is whatresearchers mean when they say, for example, that \the multi-armed banditproblem was solved, after puzzling researchers for thirty-years, by Gittinsand Jones," [Walrand, 1988]. The next section provides a summary of theGittins-Jones solution.(Aside: For MDP's in general, the problem of computing optimal valuefunctions may alternatively be viewed as a problem of constructing transition-matrix/expected-reward-vector pairs, (P�� ; R��), yielding optimal values forV in Equation 1; that is, the optimization procedure seeks (P�� ; R��) suchthat V = (I � 
P��)�1R�� is maximized, where the choice of (P�� ; R��) isconstrained in the following way:Let Pai be the transition matrix associated with taking action i in everystate, and let Rai be the corresponding entry of the expected reward vectorunder action i. (If action i is inadmissible for a given state, the correspondingentries in Pai and Rai are null.) Then each row of P�� must be set to thecorresponding row of one of the Pai's, and the corresponding entry of R��must be consistent with this choice; i.e., if the jth row of P�� is chosen to bethe jth row of Pai, then the jth entry of R�� must be chosen to be the jthentry of Rai.For the case of n states and m possible actions in each state, this impliesmn possible candidates for (P�� ; R��), and the goal is to select that candidate-pair that yields, as a solution to Equation 1, an optimal value for V|thisinterpretation is implicit in Bellman's Equation 2.Consider a very simple example of a bandit problem in which there arethree tasks, each with only two states. Then FABP-states may be representedby binary strings of length three; for example, the string \011" signi�es aFABP-state in which the �rst bandit process in is state 0 while the otherbandit processes are both in state 1. The transition matrix for a policy de-�ned by taking the same action in all states is 8-by-8, but is quite sparse.For example, the transition matrix associated with the action \activate the7



second task" has, for each row, possible nonzero entries only for columnsassociated with bit-strings that match the row bit-string in all positions ex-cept possibly the second, a consequence of the fact that non-activated tasksdo not change state. This, along with the fact that rewards received de-pend only upon the state of the active task, may lead one to suspect theexistence of decompositional algorithms of order O(N jSjc) for computingoptimal policies.)4 The Gittins Index\...The term `Gittins index' now has �rm currency in the lit-erature, denoting the concept which �rst proved so crucial in thesolution of the long-standing multi-armed bandit problem andsince then has provided a guide for the deeper understanding ofall such problems....The multi-armed bandit is a prototype of thisclass of problems, propounded during the Second World War, andsoon recognised as so di�cult that it quickly became a classic, anda by-word for intransigence. In fact, John Gittins had solved theproblem by the late sixties, although the fact that he had doneso was not generally recognised until the early eighties. I canillustrate the mode of progagation of this news, when it beganto progagate, by telling of an American friend of mine, a col-league of high repute, who asked an equally well-known colleague`What would you say if you were told that the multi-armed ban-dit problem had been solved?' The reply was somewhat in theJohnsonian form: `Sir, the multi-armed bandit problem is not ofsuch a nature that it can be solved.' " |Peter Whittle2Consider the version of the multi-armed bandit problem described previ-ously in Section 2 in which the decision maker has the added option at eachstage k of permanently retiring and receiving retirement reward 
kM .2From the forward to [Gittins, 1989]. Elsewhere (in the discussion following [Gittins,1979]), Whittle recalls that the e�orts to solve the multi-armed bandit problem \: : : sosapped the energies and minds of Allied analysts that the suggestion was made that theproblem be dropped over Germany, as the ultimate instrument of intellectual sabotage."8



V(M)

MgFigure 2: The Gittins index as an indi�erence threshold (after [Bertsekas,1987], p. 262).The rich structure of the bandit problem turns out to imply that thereexist functions, gi(xi(k)), for each task that map bandit process states tonumbers, or \indices," such that optimal policies for the FABP have theform: Retire if M > maxifgi(xi(k)) gActivate task j if gj(xj(k)) = maxifgi(xi(k))g �M:Thus one interpretation of gi(xi(k)) is as an index of pro�tability for activat-ing task i; it is known as the \Gittins index."In order to gain further insight into the meaning of the Gittins index and,perhaps, a method for calculating it, consider the bandit problem for a singletask i. This is a standard stopping problem.Let V �i (xi;M) be the optimal value function viewed as a function ofM for�xed xi. For large values of M , V �i (xi;M) = M , while for su�ciently smallM , V �i (xi;M) is some constant value independent of M (i.e., the optimalpolicy excludes retirement). Between these two extremes, it may be shownthat V �i (xi;M) is convex and monotonically non-decreasing, and that thereis a minimal value of M such that V �i (xi;M) = M (Figure 2).In fact, the Gittins index is this minimal value; that is, for all xi,gi(xi) = minfM jV �i (xi;M) = Mg:Thus, another interpretation for the index is that it provides an indi�erence9



threshold for each state between retiring and activating the task when instate xi.Proof of the fact that policies determined by indices de�ned in this wayare optimal is beyond the scope of this paper (see [Gittins, 1989], [Varaiya etal, 1985], or [Bertsekas, 1987] for rigorous proofs). Whittle's proof [Whittle,1982] that the index rule yields an optimal policy reveals along the way aninteresting relationship that exists between the optimal value function of theoverall multi-task FABP, V �(x�;M), and the optimal value functions of thecomponent bandit processes, V �i (xi;M):@V �(x�;M)@M = NYi=1 @V �i (xi;M)@M :Another interpretation of the index may be derived [Ross, 1983] by againconsidering the single-task problem in initial state xi and retirement rewardM = gi(xi); i.e., the optimal policy is indi�erent between continuing andretiring. It follows that, for any positive random retirement time, � , (a\stopping time" in the sense of stochastic process theory 3 )gi(xi) � E[discounted return prior to � ] + gi(xi)E[
� ]; (3)with equality holding under the optimal continuation policy. Therefore,gi(xi) = max�>0 E[discounted return prior to � ]1 �E[
� ] ;or (1 � 
)gi(xi) = max�>0 E[discounted return prior to � ]E[discounted time prior to � ] :Thus, to calculate an index, it su�ces to �nd the stopping time, � , such thatthe maximum reward per unit time (both discounted) prior to � is maximal.Weber provides an intuitive proof [Weber, 1992] for the optimality ofthe Gittins index rule that is based on the notion of a fair game and aninterpretation of the index that is equivalent to the previously-mentioned3An integer-valued positive random variable � is said to be a stopping time for thesequence fX(k)g if the event f� = tg is independent of X(t + 1); X(t + 2); : : : for allt = 1; 2; : : : 10
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Prevailing chargeFigure 3: Fair charge and prevailing charge associated with an example ban-dit process trajectory.indi�erence-threshold interpretation. A similar view is presented in [Ishikida& Varaiya, 1994], where the index is interpreted as the winning bid in anauction for the right to use a \pipe," and in [Gittins, 1989], where candidatebandit processes are callibrated against a \standard bandit process." Thefollowing discussion follows [Weber, 1992].Suppose there is only one bandit process and that the decision-maker(gambler) may choose to activate (play) the process or not, but must pay a�xed prevailing charge for each play. For bandit i in state xi, one may de�nethe fair charge, gi(xi), as the value of prevailing charge for which optimalplay of the bandit is a fair game; that is,gi(xi) = sup(g : sup� "��1Xt=0 
t(Ri(xi(t))� g)jxi(0) = xi# � 0) ;where the stopping time � is de�ned by the policy �.As the bandit process state evolves, so too does the fair charge. In theevent that the fair charge of the current state dips below the prevailing charge,in which case the gambler would normally stop playing, imagine that the pre-vailing charge is reset to the fair charge (Figure 3). Then the sequence ofprevailing charges for each bandit process is non-increasing with the numberof plays, and the gambler experiences continued play of a fair game. For thecase of multiple bandit processes, by following a policy of playing the ban-dit of greatest prevailing charge (or equivalently fair charge), the gambler11



interleaves the prevailing charges from component bandit streams into onenon-increasing sequence. By the nature of discounting, such a policy maxi-mizes the expected total-discounted charge paid by the gambler. Since thegambler is engaged in playing a fair game, this policy maximizes expectedtotal-discounted reward.5 Restart-in-state-i problems and the GittinsIndexRestrict attention, for the moment, to the transition- and reward-structureassociated with a single task and consider the following \restart-in-i" prob-lem. In each state, j, one has the option of either continuing from state jand accumulating discounted rewards, or else instantaneously \teleporting"to state i and accumulating discounted rewards from there. The problem isto �nd a policy that optimizes the expected discounted value of each state.The dynamic programming equation for the optimal value function forthis problem may be written: for j = 1 to N;V ij = maxfrj + 
Xk PjkV ik| {z }\Continue00 ; ri + 
Xk PikV ik| {z }\Restart00 g;where V ij signi�es the jth component of the optimal value function for therestart-in-state-i problem.In particular, the ith component satis�esV ii = ri + 
Xk PikV ik ;and V ii may also be interpreted as the maximum value in state i for thecorresponding embedded single-state semi-Markov decision chain; i.e., V iisatis�es V ii = max�>0 E n[discounted reward prior to � ] + 
�V ii o ;where � is a stopping time for the process, namely, the �rst period in whichone chooses to restart in state i in the restart-in-i problem. Comparing thislast equation with Equation 3 in the preceeding section under the optimal12
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Figure 4: The restart-in-i problem.continuation policy, one concludes that V ii may be identi�ed with the Gittinsindex, g(i), for state i.For a given state i, there is a set of states, the \optimal restarting set," forwhich, once entered, it is optimal to restart in i (see Figure 4). The numberof transitions taken to reach this restarting set, starting from state i, is theoptimal stopping time associated with the Gittins index.Katehakis and Veinott [Katehakis & Veinott, 1987] suggest calculatingthe Gittins indices by solving the corresponding restart-in-i problems viasuccessive approximation:V1  maxfVi; r1 +Xk P1kVkgV2  maxfVi; r2 +Xk P2kVkg...Vi  ri +Xk PikVk...VN  maxfVi; rN +Xk PNkVkgFor each state i, there corresponds a restart-in-i subproblem that can besolved in this way, yielding as its ith component the Gittins index for state i.13



6 On-line estimation of Gittins indices via Q-learningThe multi-armed bandit problem was stated in Section 2, and Section 4presented the Gittins index approach for constructing optimal policies, anapproach that reduces the bandit problem to a sequence of low-dimensionalstopping problems; Section 5 asserted that the Gittins index for a given statemay be characterized as a component of the optimal value function associatedwith a stopping problem, a simple MDP.Reinforcement learning methods, such as Q-learning, are adaptive, model-free algorithms that can be applied online for computing optimal policies forMDP's. Q-learning [Watkins, 1989] was originally advanced as a sample-based, Monte-Carlo extension of successive approximation for solving Bell-man's equation; alternative motivation and justi�cation for the algorithm, aswell as rigorous proofs of convergence, appeal to results from the theory ofstochastic approximation, see [Jaakkola et al, 1994] and [Tsitsiklis, 1994]|the Appendix to this paper provides an informal summary and rationale.It follows that, in principle, Q-learning can be applied to calculate Gittinsindices and hence provides a model-free means for learning to solve banditproblems online.To be a bit more speci�c, for a given task and given restart-in-i subprob-lem there are two actions available for each state: \continue" and \restart."Associated with each of these actions is a transition matrix and expectedreward vector corresponding to a policy in which only the continue action oronly the restart action is applied (all rows of the restart transition matrixand entries of restart expected reward are identical to the ith row of the con-tinue transition matrix and ith entry of the reward vector, respectively). Aswas discussed in Section 3.2, the problem of �nding an optimal policy for therestart-in-i MDP is equivalent to the problem of constructing a transition-matrix/expected-reward-vector pair, whose rows and entries are drawn fromrows and entries of continue- and restart- matrices and reward vectors, thathas maximal value.In principle, the theory of reinforcement learning implies that Q-learningwill converge to the correct optimal values associated with the various restart-in-i MDP's. However, in practical terms, it is reasonable to question themeaning of the \restart" action in, for example, the context of stochastic14



scheduling. One cannot, simply, reset a given task to a desired state by anomnipotent act of will. What one desires is that Q-learning \backups" (com-ponentwise computational contractions | see the Appendix) be performedfor states that arise naturally along sample paths of the FABP process.Consider, then, one step of the FABP process in which a given task isactivated and changes state from state i to state j generating reward r. Thissimple transition yields data relevent to the value of taking the continueaction when in state i. Note that the data are relevent to all restart problemsfor the given task. Observe also that the transition supplies informationabout taking the restart action for the restart-in-i subproblem for all statesin the given task.In summary, observing a state-transition from i to j and reward r for agiven active task with n states allows 2n Q-learning backups to be performed;that is, for k = 1 to n, backup:Q(state=i, action=Continue, restart problem = k) |\Continue data"Q(state=k, action=Restart, restart problem = i) |\Restart data":It remains to de�ne task activations in a way that achieves the requisitesampling of states and actions as discussed in the Appendix. There aremany reasonable ways of doing this; a generalized Boltzman-distribution-based action-selection method is proposed here.Suppose that the multi-task bandit process is in some given state x� =(x1; x2; :::; xN). The current estimate of the Gittins index for task i in statexi is given byQ(state=xi, action=Continue, restart problem=xi, task=i):De�ne action-selection via the following Boltzman distribution: for i = 1 toN , Prfactivate task ig = eQ(xi;C;xi;i)=TPNi=1 eQ(xi;C;xi;i)=T|where T is the Boltzman temperature described in the Appendix.In summary, at each stage:� Select a task to activate via the Boltzman distribution.15



� Observe the state-transition i! j and immediate reward r elicited byactivating the task.� Perform 2n backups, where n is the number of states for the activatedtask: for k = 1 to n,Q(state=i, action=Continue, restart problem=k, task) =(1� �)Q(state=i, action=Continue, restart problem=k, task)+� "r + 
 maxa2fC;RgQ(state=j, action=a, restart problem=k, task)#Q(state=k, action=Restart, restart problem=i, task) =(1� �)Q(state=k, action=Restart, restart problem=i, task)+� "r + 
 maxa2fC;RgQ(state=j, action=a, restart problem=i, task)# ;where \C" and \R" respectively denote the admissible actions, continue andrestart.If each of the N alternative processes or tasks has n possible states, then2Nn2 Q-values must be calculated and stored. Note that this is a substantialreduction from the NnN values required by an approach based upon thestraightforward MDP formulation.Moreover, each state-transition gives rise to 2n backups, and this e�ectiveparallelism may be viewed as further reducing the computational complexity.That is, to calculate all the Gittins indices, the algorithm solves Nn MDP's(number of tasks � number of restart-problems per task), each of size n. Butfor each task the associated n restart-problems are solved in parallel, and arerather simple MDP's in that there are only two admissible actions per state.7 ExamplesTo con�rm that this algorithm works, �rst consider the simple bandit prob-lem shown in Figure 5. This problem has two tasks, each with two states.Transition probabilities/rewards label arcs, and the discount factor is chosento be 
 = :7. 16
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Figure 6: Convergence of Gittens Indices for a simple example.task, i, has a service time determined by a respective distribution function,Fi. For example, consider the problem of task scheduling where each task ihas a geometric service time:Prf�i = sg = �i(1� �i)s�1:See Figure 7a.Each task i thus has a constant hazard rate, �i, and it is known that, inorder to minimize either mean 
ow time 4 or mean waiting time, an optimalpolicy is to activate the tasks in decreasing order of this parameter.It may be unreasonable to presume that the service-time distributions areknown a priori. In this case, the reinforcement-learning algorithm of Section6 can be applied, online, to calculate the respective Gittins indices directly,without building an explicit task model.In a simple experiment, ten �i's where drawn uniformly from the unitinterval, and the discount rate was set to 
 = :9. The reinforcement-learning4Mean (weighted) 
owtime is de�ned as the (weighted) sum of task �nishing times,divided by the number of tasks. 18



1−ρ

ρ

1

(a)

1−ρ

ρ ρ

1−ρ 1−ρ

ρ

ρ
.

.
.

(b)

1−ρ
/ 0

 / 1

/ 0 / 0 / 0

/ 1 / 1

/ 1

1

/

/

8−

8−

i

i

i

i

i

i

i i

(1)

(1)

(2) (3)

(2)

(3)

1

0

1

0

2 3
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Again, the reinforcement learning algorithm was applied online in a trial-based way, and the results are presented in Figure 8, which plots the Gittins-index \surface" estimate (vertical axis) versus task (axis into the page, rang-ing from task 1 to task 9) and task-state (axis left-to-right, ranging fromstate 1 to state 10) at various stages of the learning process.It may be seen that the index values gradually \unroll" from the taskaxis (Q-values were initialized to zero). Low-numbered states are sampledmore frequently, and consequently their index values converge more rapidlythan do those of rarely-encountered task-states such as, for example, state 3of task 9.Again, it is known through analytical means that for this problem theoptimal schedule is to sequence the tasks non-preemptively, highest hazard-rate �rst.The plots of Figure 8 appear to be converging to indices that would giverise to such a policy|index estimates for rarely-encountered task-states areslowly rising to their true values. For commonly-encountered bandit states,the Gittins surface estimate yields an optimal scheduling policy relativelyearly in the learning process.Note that if one were to pursue the straightforward MDP approach ofSection 3.2, it would entail a state-set size on the order of �fty million (�9 � 9 � 8 � 8 � 7 � 7 � 6 � 6 � 5) and transition matrices of correspondingdimension|this is assuming that one knows beforehand the e�ective rangeof states for each task.It is perhaps important to stress that, in the scheduling literature, it isalways assumed that the service-time distributions are known; one contribu-tion of this paper is that the reinforcement learning algorithm makes no suchassumption.The problem of stochastic scheduling for the cases of constant or mono-tone hazard-rates is analytically tractable, and the resulting policies areusually somewhat intuitive and can be stated simply. For arbitrary, non-monotone hazard-rates, things are less well-understood, but there is nothingin the reinforcement learning approach that would preclude its applicationto these cases.For further applications of the bandit formulation to job scheduling, re-source allocation, sequential random sampling, random search, etc., refer tothe papers by Glazebrook, the book by Gittins [Gittins, 1989], and referenceslisted therein. 21



8 ConclusionThis paper has traced the following chain of reasoning:� A family of alternative bandit processes is a Markov decision process(MDP) possessing a special decompositional (Cartesian-product) struc-ture.� Optimal policies for these processes can be constructed e�ciently bycalculating Gittins indices.� The Gittins index for a given task state i is also the ith component ofthe \restart-in-i" problem.� The restart-in-i process is a standard MDP.� Optimal policies for MDP's can be computed online in a model-freeway using Q-learning.� Therefore, Q-learning can be applied online, without using a processmodel, to compute solutions to bandit problems. (The implementa-tional details of a practical algorithm were presented in Section 6.)For each alternative n-state process, the resulting algorithm computes, inparallel, the desired Gittins indices by solving n two-action MDP's, each ofsize n.A proof of convergence follows from existing convergence proofs of Q-learning for conventional MDP's [Jaakkola et al, 1994], [Tsitsiklis, 1994].One advantage of reinforcement learning methods that has not been men-tioned thus far is that, as Monte-Carlo methods, they may inherit some com-putational advantage over conventional (model-based) methods, particularlyfor very large problems. This aspect is discussed in [Barto & Du�, 1994]. Ifone has a model of the process, or processes, real-time dynamic programming[Barto et al, 1991] can be applied, in which full model-based backups are per-formed for states encountered along sample-paths. Indirect methods, suchas adaptive real-time dynamic programming, adaptively construct a model22



for the controlled process and base control policies and value-function up-date computations on the latest model (see [Gullapalli & Barto, 1994] for aconvergence proof).There are a number of generalizations of the basic bandit formulation thatare of extreme practical interest for scheduling. For example, Glazebrook andGittins [Glazebrook & Gittins, 1981] have examined the issue of the existenceof index theorems for bandit problems with precedence contraints (their focusis on such constraints that have a tree structure). Whittle [Whittle, 1981]has studied bandit problems in which new tasks arrive (index results arepreserved when the arrival process is Poisson/Bernoulli). The case of context-switching costs has been addressed in [Glazebrook, 1980]. When there ismore than one server or processor available|thus enabling more than oneprocess to be active at a time|in general, quite strong additional conditionsare required for an index theorem to hold. (The special case of the generalscheduling problem with only two processors, deterministic service times,and no precedence constraints is an alternative standard speci�cation of theknapsack problem.)It is interesting to consider the possible application of the bandit problemformulation to certain problems in robotics. For example in [Grupen et al,forthcoming] a \control basis" approach is proposed for distributed controlof manipulation tasks in which control actions are derived from a sequenceof concurrent activations of a subset of a feedback control basis (a set ofdeclarative feedback laws) bound to speci�c system degrees of freedom. Ageneralization of standard bandit processes, called \superprocesses" ([Whit-tle, 1980],[Varaiya et al, 1985]), may be relevant to the problem of learningcompositional policies online.From a cognitive science perspective, it is tempting to identify the notionof task activation with the concept of \attention." In performing a motor-control task, for example, humans adaptively allocate sensory resources.[Gelfand et al, 1994], in the context of robotic sensor integration for mo-tor control, notes that the act of invoking a vision system incurs a highcomputional cost. It follows that a vision system may be employed initiallyto help learn calibrations for unmodeled interactions, but as learning takesplace, the vision system's role in a given task should be transfered to otherinternal (proprioceptive) sensors. 23



It has been said that \Robotics is the intelligent connection of perceptionto action" [Brady, 1985], but for many natural or synthetic intelligent systemsit may, in fact, be impossible to distinguish or separate these two activities|a sensing task may be viewed as an action that changes the \state" of a worldmodel. Agents are active perceivers.Thus, in the context of active, sensor-based information gathering, asensor-planning process must decide what and how to observe, and how muche�ort to allocate to sensing a given task.The bandit problem formulation, with its rigorous theoretical founda-tion and attendant analytical machinary, presents a compelling model forthis information-gathering process. Task-directed sensor plans could be de-rived from the optimal strategies computed for suitable bandit models. In a\sensor-fusion" setting, this paper's on-line, model-free reinforcement learn-ing algorithm constitutes one approach to the problem of learning how toperceive.The bandit formalism may also serve as a useful tool in analyzing/solvingcertain general classes of planning problems. A key feature of bandit prob-lems is the (statistical) independence of their component processes. Operatordecomposability [Korf, 1987], which is su�cient for the existence of nontriv-ial macro tables, is similar in nature to bandit process independence. Forplanning problems in which subgoals are independent, serializable, or per-haps block-serializable, one may consider identifying the evolution of a givenstate-component in problem space under the action of an operator or macro-operator toward a given subgoal with a bandit problem component process.The motivation for adopting the bandit problem formalism is that, as in thespeci�c context of sensor planning mentioned above, plans could be derivedfrom optimal policies computed for the bandit model. Admittedly, in manycontexts the basic bandit formulation may be too restrictive; in the analysisof planning problems with serializable subgoals, for example, it may be neces-sary to generalize the notion of bandit process independence to \serializable"process independence. The bandit problem formalism may also prove usefulin the exploration of independent subgoals that are subject to a commonresource restriction, or in planning with respect to an abstraction hierarchyand its associated hierarchy of macro networks.24



The reinforcement learning algorithm presented in Section 6 has under-gone only preliminary empirical testing; its convergence could be accelleratedthrough the utilization of function approximators for representing Q-values orthoughtful selection of learning rate parameters, which raises an interestingissue:The examples of Section 7 considered problems of stochastic schedulingas speci�c instances of the general bandit problem formulation. But generalbandit problems themselves are archetypes of \optimal learning" problems,in which the goal is to collect information and use it to inform behavior soas to yield the largest expected reward from actions taken throughout theentire duration of the learning process. (The reader is urged to recall theslot machine interpretation of the multi-armed bandit problem stated at theend of Section 2.) This paper has presented a reinforcement learning-basedalgorithm for solving bandit problems and thus, in a sense, it might well havebeen entitled, \Learning how to Learn Optimally." But the reinforcementlearning algorithm is itself surely not optimal; its Boltzman-distribution-based scheme of action selection is practical and provisional, neither inspirednor informed by a bandit-problem mode of analysis.One could envision, then, the problem of optimally learning how to learnoptimally. (But could one learn how to do this, and do so optimally?...) Thisregress, as stated, is not entirely meaningful, for as Watkins has observed (cit-ing [McNamara & Houston, 1985]): \Learning is optimal only with respectto some prior assumptions concerning the : : : probability distributions overenvironments the animal [decision-maker] may encounter."Appendix: An informal summary of TD(0)and Q-learningTD(0)Recall from Section 3.1 the system of linear equations that determines a setof values for a Markov chain with rewards: for i = 1 to N ,V (i) = R(i) + 
Xj PijV (j): (4)Since the right-hand side, viewed as an operator acting on V (�), is a25



contraction, successive approximation is one viable computational schemefor �nding the solution: for i = 1 to N ,V (k+1)(i) = R(i) + 
Xj PijV (k)(j):TD(0) [Sutton, 1988] is a stochastic approximation method for �ndingsolutions to Equation 4; it proceeds by taking very small steps in the di-rections suggested by the \instantaneously-" sampled version of successiveapproximation; i.e., having observed a transition for state i to j with rewardr, one's instantaneous view of the right-hand side of the successive approxi-mation recursion is r + 
V (k)(j). TD(0) takes a small step in the directionr + 
V (k)(j)� V (i):V (k+1)(i) = V (k)(i) + �k[r + 
V (k)(j)� V (k)(i)]= (1� �k)V (k)(i) + �k[r + 
V (k)(j)]:The update is severely \underrelaxed" (�k is very small) so as to, over thelong run, average out the sampling noise. 5 The fact that the expected valueof the instantaneous sample is equal to successive approximation's right-handside implies, by the theory of stochastic approximation, that if step-sizes �kdiminish at the appropriate rate and other sensible assumptions hold, thenthe sequence of value-function estimates generated by the TD(0) proceedurewill converge to the true solution with probability one [Jaakkola et al, 1994].Q-learningRecall from Section 3 the system of nonlinear equations that determines aset of optimal values for a Markov decision process; i.e., Bellman's equation:for i = 1 to N , V (i) = maxa2Ai 24R(i; a) + 
 NXj=1Pij(a)V (j)35 : (5)One may show that the right-hand side of Equation 5, viewed as an op-erator, is also a contraction, and so a successive approximation method will5This view of TD(0) seems to have been �rst suggested by Etienne Barnard in [Barnard,1992]. 26



converge to the solution. Blindly attempting to apply a stochastic approxi-mation approach using this successive approximation recursion, however, iscomplicated by the presence of the \max" operation. What is the meaningof \instantaneous sample of maxa nR(i; a) + 
Pj Pij(a)V (k)(j)o?" The is-sue can be sidestepped by shifting the focus from the estimation of optimalstate values to the estimation of optimal state/action values | the so-calledoptimal \Q-values" [Watkins, 1989].The Q-function of a state/action pair, with regard to a value-function esti-mate, is the expected in�nite-horizon return when, starting in the given state,the given action is applied, and actions thereafter are prescribed by a policyhaving the given value-function; that is, QV (i; a) � R(i; a)+
Pj Pij(a)V (j),the quantity appearing within the scope of the \max" operator in Bellman'sequation. Informally, the Q-function with regard to a policy is the value ofthe policy if the policy's initial action is perturbed.In terms of Q-functions, Bellman's equation is just maxa0 Q�(j; a0) =V �(j), where the star signi�es optimal value functions. Therefore, by thede�nition of Q,Q�(i; a) = R(i; a) + 
Xj Pij(a)maxa0 Q�(j; a0);which suggests the successive approximation recursion:Q(k+1)(i; a) = R(i; a) + 
Xj Pij(a)maxa0 Q(k)(j; a0):The meaning of \instantaneous sample of the right-hand side" for this equa-tion is less problematic than that for the original form of Bellman's equation.The introduction of Q allows one, in e�ect, to interchange the order of expec-tation and maximization. Observing a transition from state i to j and rewardr upon executing action a admits an instananeous view of the right-hand sideas r+
maxa0 Q(k)(j; a0); which suggests a stochastic approximation recursion(referred to as a \backup") of the formQ(k+1)(i; a) = Q(k)(i; a) + �k �r + 
maxa0 Q(k)(j; a0)�Q(k)(i; a)�= (1 � �k)Q(k)(i; a) + �k �r + 
maxa0 Q(k)(j; a0)� : (6)Theory [Bertsekas & Tsitsiklis, 1989] implies that, if each action is triedin each state an in�nite number of times, then Q(k) converges to Q�. In27



practice, the evolving current estimate of Q� is often used to guide the se-lection of actions, resulting in a gradual focusing of backup operations tostates encountered along sample paths generated through the application ofactions comprising optimal policies ([Barto et al, 1991] includes a discussionof the ensuing computational e�ciency). The goal of action-selection is tostrike a balance between re�ning estimates for actions currently thought tobe optimal for states that lie on optimal trajectories and exploring regionsof the state-action space for which there is a high degree of value-functionuncertainty.A generic Q-learning computational cycle proceeds as follows (assumingthat the system is currently in state i):� Choose an action, a, via some designated action-selection procedure.� Observe the state transition, i! j, under action a, generating imme-diate reward r.� Perform the backup operation (Equation 6) to update the Q-value as-sociated with state i / action a.A number of practical action-selection mechanisims have been proposedto accomplish the desired sampling of state-action values. A widely-usedmethod, proposed by Watkins [Watkins, 1989], suggests choosing an action,a, via the Boltzman distribution:Prfa = ajg = eQ(i;aj)=TPj eQ(i;aj)=T|where the \Boltzman temperature," T , is initialized to a relatively highvalue, resulting in a uniform distribution for prospective actions. As com-putation proceeds, temperature is gradually lowered, in e�ect raising theprobability of selecting actions with higher Q-values; in the limit, the actionthat is \greedy" with respect to Q is selected. The details of one way (themethod used in later examples here) of de�ning the exact manner in whichthe temperature is lowered is given in Appendix D of [Barto et al, 1991]. Thestep size �k is also decreased over time in accordance with the requirementsfor stochastic approximation convergence. In the examples that appear inSection 7, this was achieved by implementing the \search-then-converge"schedule recommended in [Darken & Moody, 1991].28
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