
FA12 = 10:20 
Solving Bellman’s Equation 

by the Method of Continuity 

Michael Duff 
Department of Computer Science 

University of Massachusetts 
Amherst, MA 01003 

413-545-1596 duff(Ocs.umass.edu 

Abstract  

It is known [2] that policy iteration can be identi- 
fied with Newton’s method (and value iteration with 
successive approximation) for solving Bellman’s opti- 
mality equation, which for Markov Decision problems 
takes the form: for i = 1, N 

(1) 

~ ( v ( i ) )  = m u  ~ ~ ( i )  + tr pU(i, j ) v ( j )  -v ( i )  = 0. 1 N 1 j=1 
UEU 

One is naturally led to consider what new computa- 
tional methods might be suggested by adopting alter- 
native root-finding procedures. This paper summa- 
rizes an investigation of the consequences of adopting 
one particular root-finding scheme called the method 
of continuity (also known as the method of imbedding 
or homotop y )  . 

Newton-Kantorovitch Policy Improvement 
Continuation/Homotopy 

1. Markov Decision Problems 

Consider a system whose dynamics are described by 
a finite state Markov chain with transition matrix P, 
and suppose that at each time step, in addition to 
making a transition from state zt = i to zt+l = j with 
probability p,j, the system produces a randomly de- 
termined reward, T ~ + ~ ,  whose expected value is F ( i ) .  
The evaluation function, v ,  maps states to their ex- 
pected, infinite-horizon discounted returns: 

In addition, for each state, suppose that there are 
a number of actions, U E U, from which to choose, 
and that choosing an action determines the transition 
probabilities and reward distribution associated with 
that state. A policy is a mapping of states to actions, 
and one may think of P above as the transition matrix 
associated with some particular policy. The MaTkov 
Decision Problem is to find a policy that optimizes 
the value function over all states. The optimal value 
function satisfies Bellman’s optimality equation ( l), 
and the optimal policy is greedy with respect to it. 

2. The Method of Continuity and an 
Imbedding for Bellman’s Equation 

Suppose that the nonlinear equation to be solved is 
F ( z )  = 0. In the method of continuity [l], one con- 
structs a function G(z, A), where X is a real param- 
eter, such that when A = XI, G(zlX1) = F ( z ) ,  and 
when X = Xo, G(z,Ao) is an equation that is easily 
solved. The intention is that X provide a continuous 
transition between the simpler, base problem, and the 
desired, target problem. Consider 

G(z, A) = 0, (2) 
and suppose we have a solution z o  at Xo; i.e., 
G(z0,Xo) = 0 .  Our hope is that (1) implicitly de- 
fines a function .(A), XO < X < XI. .(A) is said to 
be the “branch” of (1) passing through (zo,XO),  and 
what we would like to do is follow the branch from 
(SO, Xo) to z(X1), the solution of target problem The 
Implicit Function Theorem states that if VG is con- 
tinuous and E(z0 ,  A,) # 0, then there will exist, for 
a small A-neighborhood about XO, a branch through 
(00 ,  A,) having the functional form a = .(A). In the 
method of continuity, we extend a(A) by solving a 
sequence of initial value problems obtained by differ- 
entiating (2) with respect to A: 

aG(z, A) da: aG(z, A) 
+--0. --_ ax ax ax 
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At X = XO, x = XO, so the right-hand-side of (3) is 
known, and therefore so is wIx=x0. For AA small, 

We can use (3) again to obtain and (4) to 
find a(X0 + 2X), etc. In this way, we hope to  con- 
struct the desired branch away from the initial point, 
signifying the solution to the base problem, and step 
along the branch toward the solution, . (XI) ,  to the 

10.00 target problem. 10.00 15.00 20.00 
v(state 1 )  

Recalling Bellman’s optimality equation (l), consider 
the function derived by replacing the “ m u ”  operator 
by a variant of the Lp-norm, the “gereralized mean:” Figure 1: Branch constructed for the example. 

(5) 
and note that the target problem corresponds to X = 
60. The entries for and are 

The results of applying the method of continuity to 
this problem are shown in Figure 1, where the branch 
of solutions constructed by the method is shown pro- 
jected onto the value function plane. 

where we have assumed that the set of possible states 
has sire N, the set of possible actions has size M, and 
that 

N 
Q(Z, I C )  E f ( Z ,  I C )  + a P( i ,  1, k ) v ( l )  

1=1 

M 
p X Q ( i , k ) ’ .  

k = l  

The base problem, taking X = 1 in equation (5) 
and assuming nonegative rewards, is to solve (MI - 
aP)v = 72, where P CUPu and 7Z E Cui;u. 
The existence of a solution for every a,O 5 CY < 1 
is guaranteed by utilizing results from the Perron- 
Frobenius theory for irreducible matrices, particu- 
larly the “Subinvariance Theorem” of [3]. 

Example: Consider the following Markov-decision 
problem: N = M = 2 a = .9 

3. Discussion 

Another look a t  Equation 4 suggests that the method 
of continuity may be viewed as solving the ordinary 
differential equation, = f(x,  A) by Euler’s method. 
One might consider conducting experiments with dif- 
ferent DE-solvers in search of one requiring a reduced 
number of right-hand side evaluations while maintain- 
ing accuracy. As it is, at  each step, O ( M N 2 )  multipli- 
cations are required to compute all the entries of 
and E, and solving the linear system, = -E ax 1 

requires O ( N 3 )  operations. So the complexity of the 
method as a whole is 0 ( N 3 )  per step, which is similar 
to policy iteration, which must also solve a system of 
linear equations at  each step. For further develop- 
ments and the details, contact the author. 
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